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Abstract

In this paper we propose a moving-estimates test for parameter stability and characterize

its asymptotic null distribution analytically. The proposed test is based on fluctuation

of moving estimates computed from a sequence of subsamples of the same size and is

computationally simple. We obtain the limiting process of fluctuation of moving estimates

using the functional central limit theorem and derive formulas representing the boundary-

crossing probability of this limiting process, from which the asymptotic critical values of

the proposed test are determined and tabulated. The proposed test is consistent for a

general class of alternatives. Our simulation also shows that the proposed test has power

superior to other competing tests when there are double structural changes.

JEL Classification Number: 211

Keywords: Moving Estimate, Fluctuation Test, Moving- Estimates Test, Wiener Process,

Brownian Bridge, Structural Change, Boundary-Crossing Probability, Functional Central
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1 Introduction

Testing for parameter constancy has recently been receiving much attention in the econo-

metric literature. Contributions to this topic include the fluctuation (FL) test of Sen [15]

and Ploberger, Kramer & Kontrus [14] and maximal Wald-type test of Hawkins [11], and

maximal likelihood-ratio-type and Lagrange-Multiplier-type tests of Andrews [1]. In con-

trast with traditional testing procedures such as the Chow [5] test, a novel feature of the

new testing results is that no prior knowledge of the location of change point is required.

Under quite general conditions, these new test statistics have well defined asymptotic dis-

tributions in the space of continuous functions, and their critical values can be determined

using the well-known boundary-crossing probability formulas associated with the Brown-

ian bridge or tied-down Bessel process. These testing results have also been extended to

models with trending regressors, e.g.. Chu & White [6] and Hansen [10].

In this paper we propose a different test for parameter stability. Our test is similar to

the FL test in spirit, in that the test statistic is determined by fluctuation of (a sequence of)

parameter estimates. On the other hand, our test is implemented using moving estimates

computed from a sequence of subsamples of the same size, whereas the FL test is based

on recursive estimates calculated from a sequence of subsamples of increasing size. The

proposed moving-estimates (ME) test is also different from the "homogeneity test
71

of

Brown, Durbin & Evans [4] and the moving (rolling) i-tests of Banerjee, Lumsdaine &

Stock [2]. Moving estimates have been used in econometrics mainly for tracking a time-

varying system. Intuitively, moving estimates are more sensitive to parameter changes

than recursive estimates, hence a smaller number of moving estimates suffices to detect

parameter changes. The ME test is therefore computationally simple: in particular, the

number of models which need to be estimated in the proposed test is about one half of

that of the FL and maximal Wald-type tests. Our simulation also shows that the proposed

test has power superior to other competing tests when there are certain double structural

changes.

A further contributions of this paper is to characterize the asymptotic null distribution

of the ME test statistics analytically. Under the null hypothesis that the true parameter is

a constant, we find that fluctuations of moving estimates (in terms of their deviations from

the full-sample average) converge weakly to the increments of a Brownian bridge. However,
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this limiting process is non-standard and, to the best of our knowledge, its boundary-

crossing probabilities have not been investigated yet. We explicitly derive formulas to

represent these probabilities, from which the asymptotic critical values of the ME test can

be determined. Apart from its application to test of parameter constancy, the probability

result we establish is new and interesting in its own right.

This paper is organized as follows. We introduce the ME test for the location model

in section 2. The main asymptotic distribution result is derived in section 3. Extension

to the multiple regression model is discussed in section 4. We report simulation results in

section 5. Section 6 summarizes the paper. All proofs are deferred to the Appendix.

2 The Moving-Estimates Test

Consider the location model

yt
= \i{ + €i, i = 1,2 ,T.

We assume that {ej} is a sequence of random variables obeying a functional central limit

theorem (FCLT), i.e., the normalized partial sum of e
t
converges weakly to the standard

Wiener process:

/ , m \(^g^o^ij^ (i)

as T —» oo, where

a 1 = lim -=- IE
T-oo T

1
T

[Tt] is the integer part of Tt, => denotes weak convergence (of the associated probability

measures), and W is the standard Wiener process. For more details about weak conver-

gence and FCLT we refer to Billingsley [3]. We note that (1) holds under fairly general

conditions and that (1) remains valid when a is replaced by a consistent estimator a\ see

e.g., Wooldridge & White [16].

Under the null hypothesis that the parameter is a constant, \i{ = \.lq for all i. In what

follows we call a subsample a "window
1

' (of the whole sample), and a denotes an estimator



of a. We recall that the FL test computes the recursive estimates of ^o from a sequence

of growing windows:

fik = t $^2/i. k = 1,---,T, (2)

and the test statistic is based on the differences between fi^ and the full-sample average

fiT under suitable normalization:

FLr =
,W<TJ7r

{iik ~M - (3)

For given h (0 < h < 1), the moving estimates of //q are computed from windows, each

with [Th] observations, moving across the whole sample. That is,

- k+[Th]

Am=™t E ^ fc = o,..-
1
r-[r/i]. (4)

L
J n

J i=jb+i

Note that moving estimates (4) are computed using only the most recent [Th] observations

in the window, and the information from the distant past (depending on the window size)

is excluded gradually as windows move forward. On the other hand, recursive estimates

(2) are obtained from growing windows so that no past information is discarded. Hence,

moving estimates usually contain "purer" information and are more sensitive to parameter

changes than recursive estimates.

Under the null hypothesis that the true parameter is a constant, moving estimates

should not fluctuate too much and should be close to fij. The proposed ME test for

parameter stability is therefore based on the differences between /i^ and fij. Typically,

we are interested in the two-sided alternative: f.i l ^ /*o for some i. In some applications, it

is possible that only an one-sided alternative (e.g.,
fj,{

> f.i for some i) concerns us. This

situation may arise when one has prior belief that the mean /i might have changed in only

one direction or when the error of accepting the null hypothesis under /i, < /.to is of no

practical importance. For example, let y be the ratio of defective products of a production

line. A quality control manager is only interested in whether there is a significant increase

of this ratio; a decrease of the defective ratio is not practically relevant. The ME statistics

for one- and two-sided alternatives are, respectively,

**** =
t=o.

miV)£l (''""'ir) ' (5)

f/Tl I 1

MET<h = max —-= \jikh - fiT \. (6)
k=o,-,T-[Th] aVT



Let St denote the piecewise constant interpolation of

so that Sr(t) = (ffvT)" 1

Y/i=i €i- $T is a process in D([0, 1]), the space of functions that

are right continuous with left-hand limits on [0,1], and Sj => W by the FCLT (1). Also

let ST denote the tied-down process given by

[Ti]
ST (t) = ST (t)

T
St(D

which is also in £([0,1]) with jumps at fc/T, 1 < k < T. Note that ST {0) = ST {1) =

and ST =*• W°, where W° is a Brownian bridge. Also note that ST attains its extrema at

one of the jump points k/T. Under the null hypothesis,

[Th]

aVT
{p>k,h - At)

aVT
[Th] 1

5>T as/Tt,

= ST
k + [Th]

T
-sT (i)-l^isT ,i;

5r (i+M) _ iiJ^5T(] 5t(|)-^5t(1

= 5?T £ + *r)-*g (7)

where /i^ = [Th]/T. The associated empirical ME process

MT,h{t) = j-i=(i*[m],h -M
(8)

is the piecewise constant interpolation on [0, 1 — h] of (7) with interpolation nodes k/N,

< k <T - [Th], where N = (T - [Th])/(l - h). Observe that [Nt]/T — t and hT — h

as T —> oo. With a little extra work, the following result follows from the continuous

mapping theorem.



Theorem 2.1 Assume that the FCLT (1) holds. Then under the null hypothesis, if a is

consistent for a, we have

MT,h =» Mh ,

where Mh (t) = W°{t + h) - W°{t) for < t < 1 - h. In particular,

MEf h => maxo^Ki-^M^i),

MET,h => maxo< t<i-k\Mh{t)\.

This result says that the empirical ME process converges in distribution to the incre-

ments of a Brownian bridge. The probability that the limiting process M^ crosses the

boundaries a and (3 {a < j3) at least once on [0, 1 — h] is

W{Mh (t) > [3 or Mh {t) < a for some < t < 1 - h).

Clearly, for a = — oo and a = — /?, the boundary-crossing probabilities determine the

asymptotic critical values of the ME test statistics for one- and two-sided alternatives,

respectively. These probabilities are evaluated in the next section.

There is an obvious dilemma in choosing the window size h. When h is large, moving

estimates are relatively more precise under the null hypothesis. If the true parameter

follows two regimes, a large h implies that a smaller number of estimates can be used

to detect parameter instability, and many moving estimates will incorporate data from

two regimes. If h is small, on the other hand, we have more (but relatively imprecise)

estimates to detect parameter changes, but the detected structural instability might just

be a consequence of sample variation. In view of this trade-off, a natural choice is h — 1/2.

Thus, each moving estimate is calculated using [T/2] observations. We also note that the

proposed ME test computes at most T - [T/2] + 1 moving estimates, in contrast with

the FL test which may have to compute T recursive estimates and other competing tests

such as the maximal Wald test which must estimate two models for each hypothetical

change point. Hence, the proposed ME test is computationally simpler. Given current

computing capability, computational simplicity is by no means our major concern. What is

remarkable is that the proposed test, which uses much less estimates, can outperform other

competing tests when there are multiple structural changes; see Section 5 for simulation

results.



3 Asymptotic Null Distributions

A major challenge of this research is that, to the best of our knowledge, there is no known

boundary-crossing probability result for the limiting Mh process. This is different from the

situation encountered in [1] and [14], where the boundary-crossing probability results of

the tied-down Bessel process and Brownian bridge are well known in literature. Nonethe-

less, we show that the asymptotic distribution of the ME statistic can be characterized

analytically as well.

The process Mh is clearly Gaussian with mean zero and continuous paths. For <

s < t < 1 — /i, we have

cov{Mh(s),Mh (t))

= cov(W°{s + h), W°{t + h)) - cov(W°{s), W°{t + h))

- cov(W°(s + h),W°(t)) + cov(W°(s),W°(t))

= [(s + h)-(s + h)(t + h)] -[s- s(t + h))

- [min(s + h,t)-{s + h)t] + [s - st]

= h(l — h) — m\n{s + h,t) + s

= h(l — h) — m'm{h,t — s).

The covariance function of Mh. is thus

cov(Mh(s),Mh (t)) = a2
h
- mm(h,\t - s\), (9)

where a\ — h{\ - h) is the variance of the Mh process. In particular, M/
l (0) is normal

with mean zero and variance a\.

Conditional on Mh{0), we can represent the Mh process in terms of a Brownian bridge

by rescaling the time parameter, as shown in the following lemma.

Lemma 3.1 Let h > 1/2. Given Mh{0) = m,

Mh = d
((1 - t/a

2

h )m + 2ahW {t/2a
2

h ), < t < 1 - h)

where — denotes equality in distribution of two random processes.



By Lemma 3.1, the conditional probability that Mh{t) remains within the constant

boundaries a and (3 on [0, 1 — h] can be written as the probability that a Brownian bridge

stays within two linear boundaries. That is,

ph{a,(3;m)

:= JP{a < Mh {t) < (3 for all < t < 1 - h\Mh {0) = m)

= W{a < ( 1 - t/a 2 )m + 2ah W°{t/2a
2

h ) < {3 for all < t < 1 - h]

= EP{q < (1 - 2u)m + 2ah W°{u) < (3 for all < u < l/2/i},

where the last equality follows by letting u = tl'2a\. We now confine ourselves to the case

that h = 1/2. Then, a\ = 1/4 and

Pi/2(a,/3;m)

= IP{(q - m) + '2um < W°{u) < (/3 - m) + 2um for all < u < 1}. (10)

It is easy to show that (1 + t)W°(t/{ 1 + t)) is in fact a Wiener process. Now, if a, 6,c,(/ > 0,

by letting u = t/(l + t) we can write

JP{-a{ 1 - u) - bu < W°(u) < c(l - u) + du for all < u < 1}

= IP {-a- bt < (1 + f)W°(*/(l + 0) < c + ^ for all t > 0}

= \P{-a - bt < W(t) <c + dt for all t > 0}

= 1 - J^_ (e
-2 '4

^ +e~ 2Bk - e~ 2Ck -e" 2Dfc
), (11)

where

Ajt = /c
2
cd + (A; - l)

2
a6 + k{k - l){ad+ be),

Bk = (k-1
)

2
cd + k

2
ab + k{k-l){ ad + 6c),

Cfc
= fc

2
(a6 + cd) + fc(fc - 1) ad + k(k + 1 ) 6c,

DA = A:
2
(a6 + erf) + A; (A: + l)ad + k(k - I) be;

the last equality of (11) is a well-known formula due to Doob [7, p. 398]. For

a = —(a - m), 6=-(a + m), c = (3 — m, d = (3 + m,

the left-hand side of (11) is just the right-hand side of (10). We thus have:



Lemma 3.2 Conditional on Mi/ 2 {0) = m,

oo

p1/2 (a,/3; m) = 1 - £ (e~ 2Ak + e~ 2Bk - e" 2C* - e" 2ZH
k=l

where

A k
= (k/3- (k- l)aj

2 - m 2
,

Bk = {(k - l)(3 - ka) 2 - m 2
,

Ck = (k(p - a) - m)2 - m2
,

Dfc
= (A;(/3 - a) + m)2 - m2

,

/or a < 0, (3 > 0, and \m\ < m'm{\a\,f3); otherwise, p l / 2
[a,p;m) — 0.

For a < < [3, the unconditional probability that M
1 /2 (<)

stays within the boundaries

a and p is given by

IP{a < M1/2 (t) < (3 for all < t < 1/2}

= \/2/^/ p1/2(a,(3;m)e-
2m2 dm, (12)

where yj2/i:e~
2rn

is the density of M
1 / 2 (0),

which is normally distributed with mean zero

and variance 1/4. Of particular interest to us is of course the case that a — — oo and

a = —(3. By evaluating the integral in (12), we finally obtain:

Theorem 3.3 For all (3 > 0,

IP{M1/2 (0 < P for all 0<t< 1/2} = 2$(2/3) - 1 - 4p<p(2p) (13)

and

IP{|M1/2 (0| < P for all < t < 1/2}

oo

- 1-80 £0(2(2*- 1)/*) (14)

fc=i

= 2 f^-l^e"*
2*2

/8^, (15)

where $ and are f/ie distribution and density functions of the standard normal random

variable.
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In light of Theorem 2.1 and Theorem 3.3, the asymptotic null distributions of the ME

tests follow immediately.

Corollary 3.4 Assume that the FCLT (1) holds. Then under the null hypothesis, if a is

consistent for a, we have

lim IP{M£+ <(3] = 2${2p) - 1 - 4/30(2/3),

lim JP{METtl/2 < (3} = 2f(-lf+1 e-
fcV^ 2

.

T^
fc=l

Some asymptotic critical values /i are summarized in Table 1 below. We stress that these

values are not results of model-specific simulation.

Table 1: The Critical Values of the ME Test for the Location Model.

ME
Tests

Probabilities

0.90 0.95 0.975 0.99

One-Sided

Two-Sided

1.25014

1.37506

1.39774

1.51151

1.52876

1.63408

1.68411

1.78082

Note: The critical values are solved numerically using Mathematica. For two-sided tests,

/3's are solved from (15) with 10 terms in the summation, even though we notice that the

terms with k > 5 are virtually negligible.

Remarks:

(1) It is straightforward to verify that for (3 > 0,

IP{M1/2 (*) > -13 for all < t < 1/2} = 2$(2/?) - 1 - 4/?<£(2/3)

which is the same as (13).

(2) If (3 goes to 0, it is clear that the probability in (15) converges to 0, as it ought to

be. However, it may seem strange that as (3 goes to 0, (13) also tends to zero. Ob-

serve that Mi/ 2 {0) = —

M

1 / 2
(l/2). Hence, max <Ki/2 ^i/2(0 ls always non-negative and

mmo<i<i/2 -^1/2(0 ' s always non-positive.



(3) The probability of Mi/ 2 {t) crossing both boundaries on [0, 1/2] is not negligible. For

example, the one-sided boundary 1.39774 at probability 0.95 cannot be used as the two-

sided boundary at probability 0.90.

(4) Following Durbin [8], we can approximate the first passage density q of M
1 /2

(^) to

a constant boundary (3 as q(t) ~ 4/i^2/7re~ 2^
. The probability that M

1 /2 (0 crosses (3

(from below) at least once on [0, 1/2] is thus

/ qtt)dt~2Pyj2Jre-20\

It follows that the probability that M
1 / 2

(^) never crosses (3 on [0, 1/2] is

IP{M1/2 (Z) < for all < t < 1/2} ~ 1 - 'Zflyfe/re-
202 = 1 - 4/00(2/3), (1(5)

which is greater than (13) unless (3 = oo. Hence, for given probability, Durbin's ap-

proximation (16) must underestimate the correct one-sided boundary. For example, for

probabilities equal to 0.95 and 0.975, (16) yields one-sided boundaries (3 as 1.37506 and

1.51151, respectively, which are smaller than those given in Table 1. Coincidentally, these

values turn out to be the same (up to five decimal places) as the correct two-sided bound-

aries in Table 1 for probabilities equal to 0.90 and 0.95, respectively. To see this, note that

the first term (k = 1) in the summation of (14) is just 2 times the tail probability 4/3<f>{2p)

in Durbin's approximation and that all other terms in (14) are virtually negligible.

4 Extension to Multiple Regression

The previous results can be extended easily to the multiple linear regression model. We

now consider the model

yt
= x'

l
6

l + e
t , i - 1,2, •,T,

where x
t

is a n x 1 vector. The null hypothesis is that
Z
= O for all i.

We assume that the double array {x
l
e

l
/\/T} satisfies the conditions of Corollary 4.2

of Wooldridge & White [16] so that a multivariate FCLT holds:

/ !
[Tt] \

|-^E
~ 1/3

S>» €» ^*^ 1] = W\ (17)

10

M

^



»

where

, T T

and W stands for the n-dimensional, standard Wiener process, cf. (1). To reduce techni-

cality, we do not state the regularity conditions explicitly, but we note that Corollary 4.2

of [16] allows Xi and £, to be weakly dependent, heterogeneous random variables but not

integrated of positive order; see also [13]. The limiting result in (17) again holds when £

is replaced by a consistent estimator S7; for example, S7 may be a heteroskedasticity and

autocorrelation consistent estimator, e.g., Newey & West [12]. In addition to the FCLT,

we also assume that the following weak law of large numbers ( WLLN)

[Nt]+[Th]

-— £ *,*;—* q, (is)
[1 iJ

i=[Nt]+l

holds uniformly in < t < 1 - h for given h, where as usual N = (T — [Th])/(l — /i),

— p stands for convergence in probability and Q is a non-singular, non-stochastic n x n

matrix. Note that if / = and h = 1, (18) gives the standard WLLN. It is not too hard

to show that if

I I
- J2 X iX i

— Q
1=1

almost surely, then (18) holds uniformly in < t < 1 — h. We omit the details.

For given n, the moving OLS estimates are

fc = 0,---,T- [Th]. (19)

Let dj be the standard (full-sample) OLS estimator, Qj - T~ x

J2l=i x
i
x

'i-
an ^ Dj =

QT ^tQj sucn tnat -^t
= ^r Q^- Here

^ ^T ' s again an estimator of D. For an

n-dimensional vector V, let j|V j|
= maxJ= i (

...
i7l

\Vj\ be the maximum norm of V, where Vj

is the j»-th element of V. The ME test statistic for the multiple regression model is defined

as

fe=0,"
i

,T-[T/i] v/T
MET,h = t

m^x_/-1d\\Dy'\ek
,k -eT )\\. (20)

11



Analogous to the notations used in Section 2 let

[Tt]

sT (t) =
1 v-1/2

;7r
T J2 x

<
€

>

1=1

and let Sj denote the tied-down process given by

S°T(t) = ST{t)-^ST(l).

Under the null hypothesis, we have

[Th]
D-T

l/2

(k h -0T)
VT

— b~ 112 i
k+[Th]

-1

M x,x»*I

^r
V-l/2

k + [Th] k

Yl x
' €i ~ Y2 xi€i

fc+[T/i]

[r/i] ^ XlX
'

1

(=i

-i

g
i

T
i= /o+l

fc+lTA] Jt

^ x
l
e

l
-^x

l
e

l

i=\ t'=i

+ST (i±M)_ 5r (i)_tpi Sr(1) . (21

It is readily seen that the first term on the right-hand side of (21) is vanishingly small under

WLLN (18) and the last three terms are S^ik/T + hT )
- Sj{k/T). Let the multivariate

empirical ME process Mj^ be the piecewise constant interpolation of (21), cf. (8), and let

W° be an n-dimensional Brownian bridge. The following result is a multivariate extension

of Theorem 2.1.

Theorem 4.1 Assume that the FCLT (17) and WLLN (18) hold. Then under the null

hypothesis, if S is consistent for S, we have

MTM => M h ,

where M h {t) = W°{t + h) - W°{t) for < t < 1 - h. In particular,

MET
,
h => max \\M k (t)\\.

U\t\ l — a

12



For h = 1/2, we obtain from Theorem 3.3 that:

Theorem 4.2 Assume that the FCLT (17) and WLLN (18) hold. Then under the null

hypothesis, if £ is consistent for S, we have

OO n

Ym^W{MET
, l/2

< [3] = I 2 £ (_l)*+i e-^W

where n is the number of parameters in the model.

In Table 2 we summarize the asymptotic critical values for the regression model with 1 to

10 variables at various probabilities. Clearly, the critical values for n — 1 are just those

given in the last row of Table 1.

[ Table 2 About Here
]

We now consider a general class of alternatives:

9i = 9 + T- 6
g(i/T), (22)

where g : [0,1] — IR
n

is a (non-constant) vector-valued function of bounded variation on

[0, 1]. If 6 = 0, (22) is a global alternative; if 6 = 1/2, (22) characterizes a sequence of

local alternatives, g may e.g. be a step function to represent multiple structural changes

or a continuous function to represent smooth or periodic parameter changes.

Theorem 4.3 Assume that the FCLT (17) and WLLN (18) hold. Then under the alter-

native (22), if Sj
1

is O p (l), we have

T6- 1 '2MET>h = max t~
l/2

(QL h g(t) + T 6 - l^ l ^ 2MTM (t)) +op (l), (23)
0<Kl-/i

where

rt + h r\

Lhd(t) = / g(u) du — h g{u)du.

Notice that under the alternative, T,j is not necessarily consistent for S; in particular,

under global alternatives (6 = 0), it is not consistent in standard cases (see further below).

13



As the derivative of the function L^g at t is g(t + h) — g(t), L^g is nonzero provided

that g is not periodic with period h. Conversely, if g has period h, and l/h is an integer,

then

rt-\-h r\ rh 1 rh

Lkg{t) — \ g(u) du — hi g(u) du —I g(u)du - h— g(u)du = 0.
Jt Jo Jo h Jo

Hence, if in addition to the conditions of theorem 4.3, Ej is also O p (l), < 6 < 1/2 and

g is not periodic with period h, the right-hand side of (23) is bounded away from zero

(in probability), and the ME test statistic grows at rate T l ' 2
~ 6

\ therefore, the ME test

is consistent against such sequences of alternatives. On the other hand, the test is not

consistent if g has period h and l/h is an integer.

More definite results on the asymptotics of the ME test under alternatives (22) can be

given under suitable assumptions on the structure of S. Suppose that {x
t } is a sequence

of suitably mixing random variables and that {e
t } is a sequence of i.i.d. random variables

with mean zero and variance a 2 which is independent of {x
t }, as assumed in Ploberger,

Kramer, & Kontrus [14, p. 308]. Given these conditions, S = o 2
Q, and a natural estimate

is

T

±T = ct
2
Qt, *2 = ^£(2/t-*;0r)

2
. (24)

!=1

It can easily be shown that

a ^ y at —
a 2

, < 6 < i,

^ 2 +
y

(g(v)-fig{v)dv)Q(g(u)-fjg{v)dv) du, 6 = 0;

notice that a 2
, > a 2 unless g in constant. Hence, we have the following.

Corollary 4.4 Assume that the conditions in [14, p. 308] hold and that S is given by

(24). Then under the alternatives (22) with 6 = 1/2,

MET
,
h ^ max M h (t) + o~ x

Q 1/2 L h g(t) ;

0< t< 1 — h

ifO <S < 1/2,

T 8- l l2METM ^o- 1 max \\Q
1 ' 2 L h g(t)\\.

0< t<. 1 — h

14



Remark: In view of the remarks after Theorem 4.3, if 6 = 1/2 and g is periodic with

period h and 1/h is an integer,

MEr,A=» max ||M fc
(t)||,

o< t< 1 — /i

which is identical to the limit under the null hypothesis. Thus, the ME test has only

trivial local power against such alternatives.

5 Test Performance and Simulation

In this section we report simulation results and analyze the test performance under single

structural change. The competing tests we consider are the FL and maximal Lagrange

Multiplier (LM) tests. We do not consider the maximal likelihood ratio and VVald tests

because they are based on the same ingredients as the FL test.

We first simulate empirical test sizes. The data y t
are generated from i.i.d. N(2,l),

and the samples are T = 100, 200, 300 and 500. Note that in the ME test the window

sizes are h = 1/2. In the LM test, it is required that for the hypothetical change points

[Tc], c must take values in some subset of [0, 1] whose closure lies in (0, 1), Andrews [1].

In our simulation, we take c E [0.1,0.9]. The variance estimate we used in these tests is

the standard one:

T

° 2
- Y2( y* ~m2

/t,

i=i

where fij is the full-sample average. These results are summarized in Table 3. It can be

seen that the ME test has quite reasonable empirical sizes; in particular, it has the least

finite-sample size distortion when T = 500.

[ Table 3 About Here
]

We also simulate the power performance based on a single structural change and double

structural changes. The data generating process (DGP) for a single structural change is

Ho + €i, i= 1,---,[TA],
Vi — \ (25)

^o + A + 6,, » = [TA] + l,...,r,

15



where /x = 2 and e
x
are i.i.d. 7V(0, 1). We consider A = 0.4 k. 0.2 and A - 0.1,0.2, • • • , 0.9

for samples T = 150 and 300. Because the power performance is symmetric in A, we only

report the results for A = 0.4 and A from 0.1 to 0.5 in Table 3. A complete result is

available from the authors upon request. It can be seen that the ME test is less favorable

than the other two tests. Nevertheless, the ME test performs quite well when sample is

300 and change points are close to the center of the sample.

[ Table 4 About Here
]

The power deficiency of the ME test in the case of a single structural change is in fact

to be expected. In the Appendix we show that, under the alternative (25),

META/2 — p - min(A, 1 - \)—, (26)

and

VT
i '" i

2
v '

aQ

L

FLt ^p M l-\)^, (27;
Vf <?0

where gq is defined after (24). Without loss of generality, set |A| = 1 and oq = 1. Thus,

(27) is a parabola (opening downward) with vertex (1/2,1/4) and zero points (0,0) and

(1,0), and (26) is the linear interpolation of (0,0), (1/2,1/4) and (1,0) which is inside the

parabola (27). Note that the asymptotic critical values of the ME test are greater than

those of the FL test, hence the FL test rejects whenever the ME test rejects. It follows

from (26) and (27) that the power of the FL test dominates that of the ME test for all

possible change points A, at least asymptotically, and both power functions attain the

maximum at A = 1/2. This is indeed compatible with our simulation results.

However, the ME test has power advantage when there are double structural changes.

For double structural changes, the DGP is

/

/z + £,, i = l,---,[T\ x ],

Vi= < /zo + Ai+Ci, i = [TA 1 ] + l,---,[TA2 ],
(28)

Ho + A 2 + €j, i = [T\ 2 ] + 1, • • • , T.

We consider two cases: A T = 0.4 & A 2 = 0.1 and Ai = 0.4 & A 2 = 0, both with jiq = 2

and the break points \+ = 0.3 and A 2 = 0.4,0.5, • • • ,0.9. The samples are T = 150 and 300.

These results are collected in Table 5 and 6. It can be seen that the ME test dominates

16



the competing tests in all cases considered, and this dominance becomes very significant

when the second break point occurs at and after 0.6. Further, the ME test has the highest

power when \\ = 0.3 and A2 = 0.8. In this case, the difference of two break points is equal

to the size of windows in the test. Also note that the FL and LM tests perform quite

similarly. It is not surprising to see that if two break points are very close, e.g., Ai = 0.3

and A2 = 0.4, all the tests have relatively low power. The DGPs we simulate here are

not unreasonable in reality. When there is a shock in economy, economic variables may

behave differently and return to previous level after certain period of time.

[
Tables 5 and 6 About Here

]

6 Summary

In this paper a ME test for parameter stability is proposed and its asymptotic distribu-

tion is characterized analytically. We derive formulas representing the boundary-crossing

probabilities of moving estimates and solve for the correct critical values. These critical

values are tabulated for future reference. When there are double structural changes, our

simulation results show that the proposed test compares favorably with the FL and LM

tests. Thus, the ME test can complement other tests for parameter stability. There are

some limitations of our results, however. First, our results do not apply to models with

integrated and trending regressors. Second, the boundary-crossing probability formula is

derived only for h — 1/2. Extension to a general h appears to be very challenging. The

result of Durbin [8] may provide an approximate solution.

17



Appendix

Lemma A Let Xj be a sequence of random processes in D([0, 1]) converging in distri-

bution (with respect to the Skorohod topology) to a random process X in C([0,l]) /c

(i.e.,

the limiting process has continuous paths). Further, let < hj < 1 be a sequence converg-

ing to < h < 1, and let kj : [0,1 — /i] —* [0, 1 — hj] be a sequence of maps such that

suPo<t<i-/i \

KT(t) — t\ tends to zero. Then, if Zj is the random process on D([0, 1 — h])

given by

ZT (t) = XT (KT (t) + hT )
- XT(KT (t)),

we have ZT => Z. where for < t < 1 - h, Z{t) = X{t + h) - X(t).

Proof: For a function / in D{[0, l])
k

,
put

uj(S) = max < S)t<i ; |
s_t|<5 |/(5) - /(0|-

Also, let St = max (\lir - M> suPo<ki-/i \nj{t) - t\) and let ZT {t) = Xj(t + h) — Xx(t).

Then 6t —^ and the continuous mapping theorem yields that ZT => Z. As

\ZT (t) - ZT (t)\

< \XT(KT(t) + hT )
- XT (t + h)\ + \XT(KT(t)) - XT (t)\

< 2uXt (26t ),

we have sup0<t<1 _ /l
\Zr{t) - ZT (t)\ < 2uxt {26t) = op {\) because A'j => X and X has

continuous sample paths. It follows from Theorem 4.1 of Billingsley (1968) that Zj has

the same weak limit as ZT , whence Zj => Z.

Proof of Theorem 2.1: We apply Lemma A. Setting Xj = 5j, X = W°, and «x(<) =

[Nt]/T. Note that for < t < 1 - h, < KT {t) < 1 - hT , where hT = [Th]/T. Clearly,

suPo<«i-/i \

KT(t) - t\ — 0. It follows from (8) and Lemma A that Mjm => Mh- Since

^T,/i is piecewise constant, it reaches its extrema at one of the jumps. Thus, from (6) we

have

metm = max MTth (t),
u< Kl —n

MET<h = max \MTM (t)\.
0<Kl-/i

18



The limits of the ME statistics now follow from the first assertion and the continuous

mapping theorem.

Proof of Lemma 3.1: If h > 1/2, the covariance function of A//JO becomes

cov(Mh{s),Mh (t)) = <T
2
h -\t-s\

by (9). Thus, for < s < t < 1 - h, [Mh(Q),Mh (s),

M

h (t)]' has a normal distribution with

mean zero and covariance matrix

at - s

a2_ t al-t + s

a\-i

vl-t + s

Using the standard regression formulas for the conditional normal distribution, we find

that given AZ/^O) = m, Mh is a Gaussian process with mean function

JE(Mh(t)\Mh (0) = m)

= JEMk {t) +
. ., .-.. (m - IEA/^0))

var(M/
l (0)J

= (l-t/a 2

h )m

and covariance function

cov{Mh{s),Mh{t)\Mh {0) = m)

cov(Mh{s),Mh{0))cov(Mh(Q),Mh (t))

29)

= cov{Mh(s),Mh (t)
varlA/^O))

= at-t + s-

= 2s-st/a 2

h .

Thus, given A//J0) = m,

30

:

(—{Mh{2a
2
hu) - (1 - 2u)m), < u <

1/2/iJ ,

is Gaussian with continuous sample paths, mean zero, and covariance function

H 2 • 2<T l u -
2(7? U 2(7? v

= u - uv, < a < v < l/2/i.

by (29) and (30), i.e., a Brownian bridge on [0, l/2h\. Hence, given M/
l (0) = m, we have

(Mh {t) - (1 - t/a2
h )m, < f < 1 - /i) = fi

(2c7
/l
H/0

(^/2(7^), < i < 1 - fc) .
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Proof of Lemma 3.2: The conclusion is obvious from the text. We only have to verify

the ranges of the parameters stated in the Lemma. In view of ( 11), a and c must be non-

negative because the standard Wiener process starts at 0. This implies that a < m < j3.

Also, a Wiener process changes its sign infinitely often with probability one, hence b and d

are necessarily non-negative. It follows that —{a — m) — {a + m) > 0, i.e., a < 0. Similarly,

P > 0. Thus, pii2 {oc,P\m) = unless a < 0, ft > 0, and \m\ < min(|a|,/5).

Proof of Theorem 3.3: For the one-sided case, a = — oo, and all A k ,Bk,Ck,Dk

approach infinity except A\ = [3
2 - m 2

. Hence,

ft°UA/2(0 < & for all < * < 1/2}

= xfy^ f (l-e- 2(p2 - m2)
)e-

2m2 dm
V J\m\<0

= J2/^ f (e-
2m2 - e

- 202 )dm
V J\m\<0

= (27r)-
1 / 2 f/ e- u2 t2 du-4(3e-W

2A
\J\u\<20 J

= 2*(2/3) - 1 - 4(3<j>{2{3).

For a — —(3, we have

Ak = Bk = {2k - iff - m2
,

Ck = (m - 2k/3)
2 - rn

2
,

D k = (m + 2k(3)
2 - m2

.

It is readily verified that

'0 ~, ,o . ,„ r'AP-y)
Jl/i I e- 2^-yfdm = (27T)-

1 / 2 / "" e~»
2
/ 2 du

J-0 J-2(0+y)

= *(2(/3-y))-*(-2(0 + y))

which coincides for y = ±2k3 and gives $(2(2/: + l)/3) - $(2(2fc - l)(3). From (12),

DM|M1/2 (0| < /3 for all < t < 1/2}

= y/V^J' pl/2(-^fcm)e-
2m2 dm

,
CO

-l) 2 2

= 2$(2/*)- l-2^2/n2/3j2 e
~ 2{2k ~ l)

fc=i
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+2]T$(2(2fc + 1)0) - $(2(2* - 1)0)

fc=i

oo

= 2$(2/?)- l-472/^/iJ]e- 2(2/: - 1)2/32
+2(1 -$(2/3))

fc=i

= 1 - 8/3^<p(2(2^ - l)/i).

fc=i

This establishes (14). To prove that (14) and (15) are equal, first observe that

OO OO /"o~ oo

8/j£#2(2*-l)0) = 40 £ <l>(2(2k - 1)0) = yj
- £ ^(afc-D 2*2

.

A;=l A:= — oo fc= — oo

Then using the alternative form of the Poisson summation formula in Feller [9. p.632] with

the density of the standard normal random variable f(x) = (2w)~ 1 ' 2e~x '
2 (such that the

characteristic function <^(a) = e~ a
'
2

), £ = A and s = 0, we have

,-(2k-l)2 \2 /2 _ . [ZZ V l--\\k
e
-k 2

ir
2 /2\ 2V- - (2k-\y.V/2 __ j^_ y- ,_

1

j

.^ V2A 2
,
^ l j

«= — oo A:=— 'Xj

For A = 2/3 we obtain

k= — oo v A:=— oo

/:= — oo

and finally

CO oo

1-80 £#2(2* -1)0) = 1- £ (
-l)V*

2 * 2 /80'

ib=l fc=-oo

oo

= 2£(-l)^ 1 6-^ 2 ^/8^. D
fc=l

Proof of Corollary 3.4: ^From Theorems 2.1 and 3.3 we have

lim W{ME+ /9 < 0}

= JP{M1/2 {t) < for all < t < 1/2}

= 2$(20) - 1 - 40<j>(20).

The second assertion follows similarly. D
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Proof of Theorem 4.1: As the square bracket term in (21):

-l

- /

/
l

[Nt]+[Th]

converges to zero in probability uniformly in t by the WLLN (18),

MT,h(t) - (S°T ([Nt]/T + hT )
- S°T([Nt]/T)) - p

uniformly in t. Hence, it suffices to consider the interpolation of Sj>([Nt]/T + h?) —

Sj>{[Nt]/T) for < t < 1 — h as in (8). The rest of the proof is therefore the same as the

proof of Theorem 2.1.

Proof of Theorem 4.2: Note that the elements W°, j — 1, . .
.

, n of W° are mutually

independent, univariate Brownian bridges. By Theorem 4.1, we obtain

lim W{METl/2 < (3}
T—*oo

= W{\\W°(t + 1/2) - W°(t)\\ < (3 for all < t < 1/2}

= JP{\Wf(t+ 1/2)- Wf{t)\ < for all j = 1,- • • , n, < t < 1/2}

= (\P{\W?{t + 1/2) - Wf(t)\ < [3 for all < t < 1/2})'
1

= (lP{|M 1/2 (Ol < for all < t < 1/2})".

The assertion now follows from Theorem 3.3.

Proof of Theorem 4.3: Under the alternative (22),

and the moving OLS estimates are

/ j fc+CTfc]

i '

j t=i+i l j i=k+i

. k+ [Th] k+[Th

XiC
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= : * + «# ^JIT^:^ + pj ,E
]
»i«J

Hence,

T6~ 1/2MEt
,"1/2/

= max r/irll^r ' (W. - *t.
0<K1-/i l J

= max
0<t<l-k

±?»Qt
I

y
j

['Vl]+(TA] \

Provided the WLLN (18) holds and that g is of bounded variation on [0,1], it can be

shown that

™-fyvt],r = ~ X! Xix[g(i/T) — p Q g(u)du

i=[Nt)+i
Jt

uniformly on [0, 1 - h] and that

T

T Tfri Jo

Hence,

1/2
Qt Q[Nt},T{f R[Nt},T) ~ Qt^T^Rt)

T

V"l/2 Q~ X

Q \ g{u)du- hQ~ l

Q / </(u)du
Jt Jo

+ o
p ( 1

= ±T
l/2QL h g(t) + op (l)

uniformly on [0, 1 - h]. As clearly

1

[Nt]+[Th]
1

t

QTQ\Nt]J -T= E 2"^ " ^"755 X>i* = ^ 1/2 MT./ t (0 + Op (l)

uniformly on [0, 1 - h] and S^ 1
is P (1) by assumption, we obtain

Ts- 1/2MET,h

±T
l/2

(QL h g(t) + T s- l ' 2 (Z l '2MT
,
h (t) + o

p
(l)))

|ET
1/2

Wlifcflf(0 + ^- 1/2E l/2
Mr,A(0) +^(1)- D

= max
0<t<l-h

= max
0<Kl-/i
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Proof of Corollary 4.4: The conclusions follow easily from Theorem 4.3 and (24).

Proof of Equations (26) and (27): In the location model with a single structural

break, we have from the second assertion of Corollary 4.4 that

•t+l/2

-MEr\i2~ p max — /

sfT
' o<t<i/2a

where g(u) = A for u > X and g(u) = otherwise. It is easy to see that

't+l/2 r\

[t+l/2
l

r\

J
g{u)du - - g{u)du

rt+ i/z
i

ri

/ g(u)du - - I g{u)du

= <

(l-A)|A|/2, *+l/2<A,

|(i-A/2)A|, t<\<t + l/2,

A|A|/2, t > A.

Hence,

max —
0<Kl/2 0"o

t+ l/2
l

M
g(u)du - -

/
g(u)du

t £ Jo

1
• ,X X 1^1= - min( A, 1 - A)

2 (Tq

This proves (26). Let (c)+ denote the positive part of c. Under the alternative (25), the

recursive estimates are

fj -[TMV ,
l v-

Mj: = ^o + (
1
A + -2_w ^m

Again, it suffices to consider the behavior of the deterministic component of these esti-

mates. We then have

max J 2_
VTaVT \N - ffl =

[T\]( T-[T\] \

&T V T J
|A| + o

p (l)

- p A(l-A)^i,

establishing (27).

24



References

1. Andrews, D. W. K. Tests for parameter instability and structural change with un-

known change points. Cowles Foundation Discussion Paper 943, Yale University,

1990.

2. Banerjee, A., R. L. Lumsdaine, & J. H. Stock. Recursive and sequential tests of the

unit root and trend break hypotheses: Theory and international evidence. Working

Paper, Kennedy School of Government, Harvard University, 1990.

3. Billingsley, P. Convergence of Probability Measures. New York: Wiley, 1968.

4. Brown, R. L., J. Durbin, & J. M. Evans. Techniques for testing the constancy of

regression relationships over time. Journal of the Royal Statistical Society, Series B,

37 (1975): 149-163.

5. Chow, G. C. Tests of equality between sets of coefficients in two linear regressions.

Econometrica, 28 (1960): 591-605.

6. Chu, C.-S. J., & H. White. Testing for structural change in some simple time-series

models. Journal of Business and Economic Statistics, to appear.

7. Doob, J. L. Heuristic approach to the Kolmogorov-Smirnov theorems. Annals of

Mathematical Statistics. 20 (1949): 393-403.

8. Durbin, J. The first-passage density of a continuous Gaussian process to a general

boundary. Journal of Applied Probability, 22 (1985): 99-122.

9. Feller, W. An Introduction to Probability Theory and Its Applications, Volume II,

Second edition. New York: Wiley, 1971.

10. Hansen, B. E. Testing for structural change of unknown form in models with non-

stationary regressors. Working Paper, Department of Economics, University of

Rochester, 1991.

11. Hawkins, D. L. A test for a change point in a parametric model based on a maximal

Wald-type statistic. Sankhyd: Indian Journal of Statistics, 49 (1987): 368-376.

25



12. Newey, W. K., & K. D. West. A simple, positive semi-definite heteroskedasticity and

autocorrelation consistent covariance matrix. Econometrica. 55 ( 1987): 703-708.

13. Phillips, P. C. B., & S. N. Durlauf. Multiple time series regression with integrated

processes. Review of Economic Studies, 53 (1986): 473-495.

14. Ploberger, W., W. Kramer, & K. Kontrus. A new test for structural stability in the

linear regression model. Journal of Econometrics, 40 (1989): 307-318.

15. Sen, P. K. Asymptotic theory of some tests for a possible change in the regression

slope occurring at an unknown time point. Zeitschrift fur Wahrscheinlichkeitstheorie

und Verwandte Gebiete, 52 (1980): 203-218.

16. Wooldridge, J. M., & H. White. Some invariance principles and central limit theo-

rems for dependent heterogeneous processes. Econometric Theory, 4 (1988): 210-

230.

26



Table 2: The Critical Values of the ME Test for the Multiple Regression Model.

Number of

Parameters

Proba i>ilities

0.90 0.95 0.975 0.99

n=l 1.37506 1.51151 1.63408 1.78082

n= 2 1.50667 1.63193 1.74546 1.88269

n=3 1.57852 1.69814 1.80711 1.93951

n= 4 1.62747 1.74345 1.84947 1.97871

n=5 1.66437 1.77772 1.88160 2.00854

n = 6 1.69387 1.80519 1.90740 2.03255

n=7 1.71838 1.82805 1.92891 2.05261

n=8 1.73931 1.84760 1.94734 2.06980

n=9 1.75753 1.86465 1.96342 2.08483

n=10 1.77366 1.87976 1.97769 2.09819

Note: The critical values are solved numerically from the formula of Theorem 4.2 with 10

terms in the summation.



Table 3: Size Simulation of the ME, FL, and LM Tests.

Tests Sample Sizes

T=100 T=200 T=300 T=500

ME
FL

LM

7.0%

7.7%

7.6%

7.5%

8.1%

7.9%

8.2%

8.4%

8.2%

9.2%

8.5%

8.3%

Note: Observations are generated from i.i.d. JV(2, 1). The critical values of the ME, FL,

and LM tests at 10% significance level are 1.375, 1.224, and 7.73, respectively. The number

of replications is 2,500.

Table 4: Power Simulation under a Single Structural Change: A = 0.4.

A T = 150 T = 300

ME FL LM ME FL LM

0.1 11.6% 14.0% 20.7% 17.3% 23.6% 39.0%

0.2 21.1% 33.6% 38.6% 39.4% 62.0% 68.3%

0.3 35.1% 52.9% 49.1% 63.4% 83.1% 80.8%

0.4 47.0% 63.0% 55.3% 80.1% 91.1% 86.4%

0.5 54.9% 66.5% 57.4% 86.9% 92.4% 87.7%

Note: The DGP is based on (25) in the text with /*o = 2, A = 0.4, and e
t

i.i.d. JV(0, 1).

The number of replications is 2,500.
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Table 5: Power Simulation under Double Structural Changes: Ai = 0.4 & A2 = 0.1.

A2 T = 150 T = 300

ME FL LM ME FL LM

0.4 11.5%

14.1%

11.7%

13.5%

11.2%

13.2%

14.5%

17.6%

14.1%

15.8%

15.6%

13.1%

0.5 17.7%

21.8%

15.2%

17.6%

14.4%

17.9%

30.0%

36.3%

24.1%

30.5%

24.6%

28.4%

0.6 30.0%

35.3%

21.0%

23.1%

20.0%

23.6%

51.0%

55.0%

37.0%

41.0%

35.0%

38.0%

0.7 39.6%

45.3%

26.0%

28.6%

26.5%

28.8%

68.7%

71.3%

48.9%

53.1%

48.5%

51.5%

0.8 49.1%

54.8%

31.7%

36.6%

33.9%

39.1%

80.0%

90.0%

61.2%

62.7%

61.4%

62.8%

0.9 42.9%

50.2%

40.4%

45.8%

39.6%

45.4%

74.4%

78.9%

69.4%

74.6%

68.9%

72.7%

Note: In each cell, the first and second numbers are the empirical power based on asymp-

totic and empirical critical values, respectively. The DGP is (28) in the text with f.i
= 2,

Ai = 0.4 & A 2 = 0.1, \\ = 0.3, and e
t

i.i.d. /V(0, 1). The number of replications is 2,500.
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Table 6: Power Simulation under Double Structural Changes: Ai = 0.4 & A2 = 0.

A2 T = 150 T = 300

ME FL LM ME FL LM

0.4 11.0%

16.0%

10.9%

13.9%

09.4%

12.5%

17.6%

21.4%

16.9%

20.0%

13.9%

14.2%

0.5 21.3%

27.2%

17.0%

22.0%

14.8%

20.0%

42.1%

43.8%

30.7%

34.5%

25.7%

29.0%

0.6 36.0%

42.8%

24.0%

27.8%

21.0%

26.1%

65.0%

68.0%

45.0%

50.0%

40.0%

44.0%

0.7 46.3%

54.3%

28.4%

30.0%

28.3%

31.9%

79.6%

82.4%

51.7%

57.6%

51.6%

56.2%

0.8 53.2%

60.3%

29.7%

32.5%

32.0%

37.6%

87.2%

93.3%

58.8%

60.8%

63.2%

64.8%

0.9 47.9%

55.9%

36.8%

41.5%

38.2%

43.9%

79.8%

80.7%

67.9%

68.7%

69.8%

71.4%

Note: This simulation uses the same DGP as that of Table 5 except that A2 = 0.
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